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Abstract. Exact results for linear and nonlinear electric
response properties of a non-interacting ensemble of
charged particles, confined within an impenetrable box
and subjected to a static, homogeneous electric field, are
derived and discussed.
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1 Introduction

Very strong interest for a deeper understanding of the
vast phenomenology associated with the interaction of
intense electromagnetic (EM) fields with matter is widely
documented in the literature. Besides obvious motiva-
tions of academic character, one realizes that behind
such research effort stand prominent technological
demands, many of them arising in modern materials
science. In particular, the increasing role of nanostruc-
tured materials for the development of optical systems
with desirable properties (large nonlinearities, fast
response, etc.) gives rise to questions concerning the
relation between their EM response properties and
underlying electronic structure [1-8]. For this simple
reason, the theoretical study of the behavior of charged
carriers confined within small structures and subjected to
external fields is recognized as being important and has
determined the development of various models with the
perspective of gaining insight into realistic situations.
We propose to deduce the exact electric response of a
““gas” consisting of an arbitrary number of independent
electrons, acted upon by a direct current electric field
and confined within a one-dimensional box with infi-
nitely high walls. The utility of this very schematic model
is well known to both condensed-matter physicists and
quantum chemists. For instance, delocalized 7 electrons
in conjugated organic molecules have been roughly de-
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scribed in terms of noninteracting fermions moving
within various networks (tube, toroidal “pillbox”, more
complex-shape geometries involving joints and branch-
es), providing what is probably the simplest model of
molecular electronic structure theory (free electron mo-
lecular orbital, FEMO model) [9, 10]. The recourse to
this model for approximately describing the dielectric
behavior of mesoscopic particles should also be pointed
out [11-15]. The latter is actually the main reason for our
interest, presently addressed at finding indications of the
optical behavior of composite materials involving dis-
persions of metal nanoparticles.

The most conventional treatment leading to the var-
ious electric response coefficients is by quantum-me-
chanical perturbation theory, a procedure that in our
case is rigorously feasible (even though troublesome for
high-order coefficients). We follow here a different ap-
proach, based on the exact solution of the quantum-
mechanical problem of a single electron acted upon by a
static electric field. This problem, even though revisited
many times (essentially for pedagogic motivations)
[16-22], is briefly reconsidered in the next section so as to
make this article self-contained. The extraction of both
linear and nonlinear electric response coefficients (i.e.
dipole polarizability and the first few hyperpolarizabili-
ties) from the exact solution is carried out in Sect. 3,
while some conclusive comments constitute the contents
of the last section.

2 Quantum mechanics of a single confined particle
subjected to an electric field

For a single particle (effective mass m and electric charge
e) confined within a one-dimensional region between two
impenetrable walls placed at x = 0, x = L and subjected
to a static, homogeneous electric field, E, the exact field-
dressed orbitals ¢,(x; F) satisfy the following Schréding-
er equation
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where F' = eE is the electric force acting on the particle
and ¢ = ¢(F) is the energy eigenvalue.

By a simple change of variable, the general solution
to Eq. (1) can be expressed in terms of the pair of
independent solutions A4i(z), Bi(z) to the Airy equation
[23] as follows

¢, (x; F) = NAi[—f(e + Fx)] + MBi[— (e + Fx)] , (2)
M and N being two constants and

om \ '3
b= () - ()

The boundary conditions ¢,(0; F) = ¢,(L; F) = 0 which
apply to the problem lead to the secular equation

Ai(—pe) Bi(—Be) | _
‘Al[ﬂ<F+Fl)] Bi[fﬂ(stFL)] =0, (4)

whose solution determines implicitly the allowed field-
dressed energy eigenvalues, &, (F).
For any eigenvalue ¢,, we have

M, Ai(—Pe,) Ai[—P(e, + FL)]
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Equation (2) for the orbital ¢, (x;F) is therefore usefully
expressed as

.05 F) = (A Bl + ]+ 3B+ 0] )
(6

to be used in conjunction with Eq. (5). N, is obviously
fixed by normalizing the orbital ¢, (xF).

The expressmn for the centr01d of any field-dressed

orbital, ( fo dxx|¢, (x; F)|?, can be cast into the form
- N2 2 B(2e—FL) >
o= ey o g ) O

where, for the sake of simplicity, energy labels related to
the specific state considered have been deleted. Equation
(7) follows after a number of manipulations, where
known exact results for indefinite integrals involving
products of Airy functions Ai(z) and/or Bi(z) and powers
have been used [24], along with the conditions expressed
by Eq. (5) and the Wronskian property W (4i, Bi) = n~!

A procedure entirely equivalent to that just described
allows the squared normalization constant, N>, to be
expressed as

o 1 1 !
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At the cost of some additional labor, the orbital centroid
can be given the following final form

2L | 26(F
W) (F) =25 | —— CEO
32 1,(%) FL
Ai[—pe(F)]

The presence in the denominator of the ratio involving
squared Airy functions Ai(z) with shifted arguments

should be observed. In the latter equation, the F-depen-
dence of the various quantities has been emphasized.
The complicated F-dependence is hardly surprising
considering that Eq. (9) is a rigorous result not affected
by restrictions posed, for example, by perturbation-
theory validity arguments.

3 Electric response properties according
to the FEMO model

The FEMO model considered in this work is rather well
known to condensed-matter physicists and quantum
chemists [25, 26]. The acronym FEMO emphasizes a
description characterized by the total neglect of inter-
electronic repulsion effects and the consequent one-
electron nature of the model. Accordingly, the electrons
move independently, remaining confined within a box of
appropriate size, and the ground-state electronic distri-
bution follows simply by filling the lowest basic one-
particle-in-a-box orbitals without violating the Pauli
exclusion principle [26].

As the system becomes polarized due to the presence
of an applied electric field, we assume the validity of
the same building-up procedure just described, now in
terms of field-dressed orbitals, i.e. polarized orbitals
allowing the full effect of the applied field. If 2N
denotes the number of electrons involved, the overall
electric dipole moment can be expressed as follows
(electronic charge — e),

= Z (10)

with the factor of 2 taking into account the spin
degeneracy and (x),(F) being the centroid location of
the nth field-dressed orbital, Eq. (9). Clearly, the
evaluation of (1) would involve an exact diagonalization
of the secular equation, Eq. (4). For not too high field
strengths, however, (u), can be expanded conveniently
in powers of the electric field E = F/(—e),

Z ! :ukn ) (11)

where w,, = (agé/;{t))
after a few terms is expected a sufficiently accurate
procedure in all practical applications.

To determine the desired electric response coeffi-
cients, we start from the following result for the energy
of the nth orbital,

N

(W) = ~2¢ 3" (),

n=1

A truncation of the expansion
=0

Ek+l

En(F) (k+ )':ukn ’ (12)
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a consequence of Hellmann—Feynman theorem [27] and
Eq. (11). From Eq. (9), then we get in a straightforward
way

k+1) eL 26,0
Z(m >?“""E “(mm* EU) ’ (13)

where we have set
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An expansion of the quantity on the right-hand side of

Eq. (13) in powers of the electric field, E, leads finally to
the following result for the coefficient of EX in Eq. (10),
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The electric polarizability, o, (linear response), the first
hyperpolarizability, 3, the second hyperpolarizability, 7y,
etc. (nonlinear response) correspond to k= 1,k =2,
k = 3, etc., respectively, in Eq. (15).

Equatlon (15) is conveniently elaborated by consid-
ering the asymptotic behavior of [4i(—|x|)]%, x| > 1. An
ingenious treatment based on an integral representation
of the squared Airy function [28, 29] yields

o~ (=DP(6p —1)!
Jrl; 961’p!|x|317 ) ’ (16)

which allows [v,(F)]"' to be expressed as a ratio of two
asymptotic series involving the field £ amplitude. At the
cost of much paper and very annoying algebra, a
procedure demanding much attention for capturing all
the terms contributing to a given field power leads to the
desired results
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=— e 17
2n%ay ; ( 3T n2n4> (17)
p=0 (18)
660
’= 27‘[662 216e2a3 Z( 3nb n2n8 n4n10> ’ (19)
where ag = hz/mez, the Bohr radius. We also find

Uon = —eL/2, as expected.

The exact response coefficients thus obtained involve
contributions associated with the N lowest orbitals
(doubly) occupied in the ground state. The result is in
complete accordance with that obtained elsewhere in
terms of a quantum-mechanical perturbation theory
treatment [30]. The polarizability, «, of the model has
actually been evaluated several times (sometimes incor-
rectly) [16, 18, 21, 22, 30, 31]. As far as the evaluation of
the second hyperpolarizability is concerned, we are only
aware of the result obtained in Ref. [30]. The fact that
the first hyperpolarizability vanishes could be antici-
pated on the basis of simple symmetry arguments. For
the model investigated, therefore, y is the lowest non-
linear electric response coefficient different from zero,
the same result holding for centrosymmetric systems
[32].

Considering the following identities involving Rie-
mann functions, ¢(p), [23]
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Equations (17)—(19) can also be expressed exactly in
terms of contributions from unoccupied orbitals
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Equations (22) and (23) constitute a more advantageous
computational form in the case of systems containing
a large number of electrons. Asymptotic expressions
follow immediately from the previous equations by using
the Euler—Maclaurin summation formula [23]. For large
N, at the lowest order, we get

L L’
= = 24
x 6m2agN  6mapky (24)
LIO LS
V= 6 2 3N5 2375 7 (25)
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where fikp = n#i(N /L) is the Fermi momentum associat-
ed with the molecular electron distribution. It is also
simply verified that the approximate expression for o
thus obtained is very similar to that resulting from a
highest occupied molecular orbital-lowest unoccupied
molecular orbital perturbation theory calculation.

For fixed L, o« and y are seen to tend to zero as N tends
to infinity, i.e. in the absence of unfilled orbitals. This
result is hardly surprising because polarizability and
hyperpolarizabilities correspond to distortion effects of
the electron distribution, whose description intuitively
requires the occurrence of virtual transitions from
occupied to unoccupied orbitals. More interesting is
the assumption that N/L is constant. The model now
predicts a strong size-dependence of both linear and
nonlinear electric response coefficients; in particular, one
could conjecture y o o/ [30, 33].

4 Some final comments

The quantum-mechanical study of a simple model
constituted by a charged particle confined within a
one-dimensional box and subjected to a static electric
field offers an easy way for investigating the electric
response of an independent electron system beyond the
ordinary linear approximation, without recourse to
perturbation-theory treatments requiring second-order
corrections to the orbitals involved [30]. In particular, we
have obtained expressions for the first two hyperpolar-
izabilities, which in realistic applications are all that is
generally evaluated (at a very demanding cost).



330

For a harmonic-confinement model, i.e. a gas of
noninteracting particles bound by harmonic forces to an
attractive center, simple considerations establish that the
electric response caused by a static electric field is only
linear in the applied field, so any hyperpolarizability is
now rigorously vanishing. Thus, the case considered in
this work (impenetrable box) could be regarded as the
simplest model capable of mimicking the behavior of
realistic systems as far as the appearance of nonlinear
electric effects is concerned.

According to Egs. (17)—(19), the results for polariz-
ability and hyperpolarizabilities follow in an additive
form from contributions o, and y,, which are not all
necessarily positive. Actually, the only positive contri-
bution, o, to o« comes from the lowest filled orbital
(n = 1), while for the hyperpolarizability the situation is a
bit more complicated. Now, in fact, y,,7; and y, are
positive, while y, and y,(n > 5) are negative. Negative
values for the polarizability mean that the probability of
finding the electron on the left-hand side of the box
(x < L/2) is greater than on the right-hand side. The
different (linear) response of a single quantum particle in
the ground state and excited states has already been
commented on [21, 22], particularly the similarity in be-
havior between a classical particle and a quantum particle
in an excited state [22]. The permanence of the effect in the
nonlinear-response regime, even though not surprising, is
a result explicitly demonstrated in the present work.
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